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Software's girth has surpassed

its functionality, largely

because hardware

 

advances makethis pos:

The wayto streamline

software lies in disciplined

methodologies and

areturn to the essentials.

Computer

emoryrequirementsof today’s workstationstypicallyjump
IMBescseveral to many megabytes—whenever

there’s a new software release. When demand surpasses
capacity,it’s timeto buy add-on memory. Whenthesystem has no more
extensibility, it’s time to buy a new, more powerful workstation. Do
increased performanceandfunctionality keep pace with theincreased
demandfor resources? Mostly the answeris no.

About25years ago, an interactive texteditor could be designed with as.

little as 8,000 bytes ofstorage. (Modern program editors request 100 times
that much!) An operating system had to manage with 8,000bytes, and a
compilerhadtofit into 32 Kbytes, whereas their modern descendants

require megabytes. Has all this inflated software becomeany faster? On
the contrary. Wereit notfor a thousandtimesfaster hardware, modern
software wouldbeutterly unusable.

Enhanceduser convenience andfunctionality supposedlyjustify the
increasedsizeofsoftware, but a closerlookreveals thesejustifications to

be shaky. A text editorstill performs the reasonably simple task of insert-
ing,deleting, and moving partsoftext; a compilerstill translates text into
executable code; and an operating system still manages memory, disk
space, and processor cycles. These basic obligations have not changed
withthe advent ofwindows, cut-and-paste strategies, and pop-up menus,
norwith the replacementofmeaningful command wordsbypretty icons.

The apparent software explosionis acceptedlargely because ofthe stag-
gering progress madebysemiconductortechnology, whichhas improved

the price/performance ratio to a degree unparalleled by anyother branches
oftechnology. For example, from 1978 to 1993 Intel's 80x86 family of
processors increased powerbya factor of 335,transistor density bya fac-
tor of 107, andpriceby a factor of about 3. The prospects for continuous
performance increaseare still solid, and there is no sign that software’s

ravenous appetite will be appeased anytimesoon." This development has
spawned numerousrules, laws, andcorollaries, which are—asis cus-

tomary in such cases—expressed in general terms; thus theyare neither
provable norrefutable. With a touch of humor,thefollowing two laws
teflect thestate of the art admirably well:

 

+ Software expandstofill the available memory. (Parkinson)
* Software is getting slower more rapidly than hardware becomesfaster.

(Reiser)

Uncontrolled software growthhasalso been accepted because cus-
tomers have trouble distinguishing betweenessential features and those
thatarejust“nice to have.” Examplesofthe latterclass: those arbitrarily
overlapping windows suggested by the uncritically but widely adopted
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desktop metaphor; and fancy icons decorating the screen
display, such as antique mailboxes and garbage cans that
are further enhancedbythevisible movementof selected

itemstowardtheir ultimate destination. Thesedetails are
cute but notessential, and they have a hiddencost.

CAUSES FOR “FAT SOFTWARE”
Clearly, two contributingfactors to the acceptanceof

ever-growing software are (1) rapidlygrowing hardware
performanceand(2) customers’ ignoranceoffeatures that
are essential-versus-nice to have. But perhaps more impor-
tantthan finding reasonsfortolerance is questioningthe
causes: Whatdrives software toward complexity?

‘Aprimary cause ofcomplexity is that software vendors
uncritically adopt almost any feature that users want. Any
incompatibilitywith the original system conceptis either
ignoredor passesunrecognized, which renders the design
more complicated andits use more cumbersome. When a
system’s poweris measuredby the numberofits features,

quantity becomes more importantthan quality. Every new
release mustoffer additionalfeatures, evenif some don't

add functionality.

All features,all the time
Anotherimportant reasonforsoftware complexity lies

inmonolithic design,wherein all conceivable features are
part ofthe system's design. Each customerpays forall fea-
tures but actually uses veryfew. Ideally, only a basic sys-
tem withessentialfacilities would be offered, a system

that wouldlenditself to various extensions. Every cus-
tomercould thenselect the extensions genuinely required
fora given task.

Increased hardware power has undoubtedlybeenthe
primaryincentive for vendors to tackle more complex
problems, and more complexproblemsinevitably require
more complexsolutions. Butit is not the inherent com-
plexity that should concernus;itis theself-inflicted com-
plexity, There are many problemsthat were solved long
ago, but for the same problemswe are now offered solu-
tions wrappedin much bulkier software.

Increased complexityresults in large part from our
recentpenchantforfriendly userinteraction.I've already
mentioned windowsandicons;color, gray-scales, shad-

ows, pop-ups,pictures, and all kinds of gadgets can easily
be added.

To some, complexity equals power
Asystem’s easeofuse always shouldbe a primarygoal,

but thatease should be based on an underlying concept
that makes the use almostintuitive. Increasingly, people
seem to misinterpret complexity as sophistication, which
is baffling—theincomprehensible should cause suspicion
ratherthan admiration.

Possibly this trendresults from a mistakenbelief that
using a somewhat mysterious device confers an aura of
poweron theuser. (Whatit does conferisa feeling of help-
lessness,if not impotence.) Therefore,the lure of com-
plexity asa salesincentiveis easily understood; complexity
promotes customer dependenceonthe vendor.

It’s well known,forexample, that major software houses
have heavilyinvested—with success—in customerservice,
employing hundreds ofconsultants to answer customer

calls aroundthe clock. Much more economical for both pro-
ducerand consumer, however, would be a product based
ona systematic concept—thatis, on generallyvalid rules
of inference ratherthan on tables of rules that are applica-
ble to specific situations only—coupled with systematic doc-
umentation anda tutorial. Of course, a customer who
pays—in advance—for service contracts is a more stable
incomesource than a customer whohasfully mastered a
produet’s use. Industry and academia are probablypursu-
ing very different goals; hence, the emergence of another
“law   

* Customer dependence is more profitable than customer
education.

WhatIfind trulybaffling are manuals—hundreds ofpages
Jong—that accompany software applications, programming
languages, and operating systems. Unmistakably, they sig-
nal botha contorted design thatlacks clear concepts and an
intent to hook customers.

This lack of lucid conceptscan’t aloneaccountfor the
software explosion. Designing solutions for complicated
problems, whetherin software or hardware,is a difficult,
expensive, and time-consuming process. Hardware’s
improved price/performanceratio has been achieved
more from better technology to duplicate (fabricate)
designs than from better design technique mastery.
Software, however,is all design, and its duplicationcosts
the vendor mere pennies

Initial designsfor sophis-
ticated software applications

 

areinvariably complicated, OOD ENGINEERINGIS

even when developed by |CHARACTERIZED BYA.

competent engineers. Truly SE

goodsolutions emerge after
iterative improvements or
after redesignsthat exploit
newinsights, and the most rewardingiterationsarethose
thatresultin program simplifications. Evolutions of this kind,
however, are extremely rare in currentsoftware practice—
they require time-consuming thought processes that are
rarely rewarded. Instead, software inadequaciesare typically
corrected byquicklyconceived additions that invariably result
in the well-known bulk.

Never enough time
Timepressure is probably the foremost reason behind

the emergenceof bulky software. The timepressure that
designers endure discourages careful planning. Italsodis
courages improving acceptable solutions; instead, it
encourages quickly conceivedsoftware additions and cor-
rections. Timepressure gradually corrupts an engineer's
standard of quality andperfection.It has a detrimental
effect on people as well as products.

Thefact that the vendor whose productisfirst on the
marketis generally moresuccessful than the competitor
whoarrives second, although with abetterdesign, is
anotherdetrimental contribution to the computer indus-
tty. The tendency to adoptthe“first” as the de facto stan-
dardis a deplorable phenomenon,basedon the same time
pressure.
Good engineering is characterized by a gradual, step-
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wise refinement of products that yieldsincreased perfor-
manceundergivenconstraints and with given resources.
Software's resourcelimitationsare blithely ignored, how-
ever: Rapid increasesin processor speed and memory size
are commonlybelieved to compensate for sloppysoftware
design. Meticulous engineering habits do not pay off in
the short run, whichis one reason why software plays a
dubiousrole amongestablished engineering disciplines.

LANGUAGES AND DESIGN
METHODOLOGY
Although softwareresearch, which theoretically holds

the key to manyfuture technologies,has been heavily sup-

ported,its results are seeminglyirrelevantto industry.
Methodical design,for example,is apparently undesirable
because products so developed take too much“time to
market.” Analyticalverification and correctness-proof
techniquesfare even worse;in addition, these methods
require a higherintellectualcaliber than that required by
the customary “try andfix it” approach. To reducesoft-
ware complexity byconcentratingonly on the essentials is
a proposalswiftly dismissedas ridiculousin view of cus-
tomers’ love for bells and whistles. When “everything

goes”is the modusoperandi, methodolo-
gies and disciplines are the first casualties.

Programminglanguage methodologies
are particularly controversial. In the 1970s,
itwas widely believed thatprogram design
mustbe based on well-structured methods
andlayers of abstraction with clearly
defined specifications. The abstract data
type best exemplified this idea and found
expressionin then-new languages such as
Modula-2 and Ada. Today, programmers
are abandoningwell-structured languages
and migrating mostlyto C. The Clanguage
doesn’t even let compilers perform secure

type checking,yet this compiler task is by far most help-
ful to program developmentin locating early conceptual
mistakes, Without type checking, the notion of abstrac-
tion in programminglanguages remainshollow and aca-
demic.Abstraction can work only with languages that
postulate strict, static typingof everyvariable and func-
tion.In this respect,C fails—it resembles assemblercode,
where “everything goes.”

Reinventing the wheel?
Remarkably enough,the abstract data type has reap-

peared 25yearsafterits invention under the heading
object oriented. This modernterm'sessence, regarded by
manyas a panacea, concernsthe construction ofclass

(type) hierarchies, Although the older concept hasn’t
caughtonwithoutthe newerdescription “object oriented,”
programmers recognize the intrinsic strength of the

abstract data type and convert toit. To be worthyof the
description,an object-oriented language must embody
strict, static typingthat cannotbe breached, whereby pro-
grammerscanrely on the compilerto identify inconsis-
tencies. Unfortunately, the most popularobject-oriented
language, C++, is no help here because it has been

declared to be upwardly compatible with its ancestor C.
Its wide acceptance confirmsthefollowing“laws”:

Computer

* Progressis acceptable onlyifit’s compatible with the
currentstate.

* Adhering toa standard is always safer.

Giventhis situation, programmersstruggle with a lan-
guage that discourages structured thinking anddisci-

plined program construction (and denies basic compiler
support). They also resort to makeshift tools that chiefly
addto software's bulk.

Whata grim picture; whata pessimist!the reader must
bethinking. Nohint of computing’sbrightfuture, hereto-
fore regarded asa given.

This admittedly somberviewisrealistic; nonetheless,
given thewill, there is a wayto improvethestate ofthe art.

PROJECT OBERON
Between 1986 and 1989, Jurg Gutknecht andI designed

and implemented a new software system—called
Oberon—for modern workstations, based on nothing but
hardware. Our primary goal was to show thatsoftware
can be developed with a fraction ofthe memory capacity
andprocessorpowerusuallyrequired, without sacrificing
flexibility, functionality, or user convenience.

‘The Oberonsystem has beenin use since 1989, serving
purposesthat include documentpreparation, software
development, and computer-aided design ofelectronic cir-
cuits, among manyothers. The system includes

* storage management,
afile system,
a windowdisplay manager,
anetwork withservers,
acompiler, and
text, graphics, and documenteditors.

Designed and implemented—from scratch—by two
people within three years, Oberonhassince been ported

to several commercially available workstations and has
found many enthusiastic users, particularlysince itis freely
available.

Oursecondary goal wasto design a systemthat could be

studied and explainedindetail, a system suitable as a soft-
ware-design case studythatcouldbe penetrated top-down,

and whose design decisions couldbe stated explicitly.
(Indeed,thereis a lack of publishedcase studiesin soft-
ware construction, which becomesall the more evident
whenoneis faced with thetaskof teaching courses.) The

result of ourefforts is a single book that describes the
entire system andcontainsthe source codeofall modules.

Howisit possibleto build a software system with some
five man-years of effort andpresentit in a single book?

Three underlying tenets
First, we concentratedonthe essentials. We omitted any-

thing that didn’t fundamentally contribute to power and
flexibility. For example,user interaction in the basic system.

is confined to textual information—nographics,pictures,
oricons.

Secondly, we wantedto use a truly object-oriented pro-
gramming language,onethatwastype-safe. This, coupled
with ourbeliefthatthefirst tenet must applyeven more strin-
gentlyto thetools than to the system being built, forced us



to design our own language andto constructits compiler as.
‘well. Itled to Oberon,‘ languagederived fromModula-2by

eliminating less essential features(like subrange and enu-
meration types)in addition to features known to be unsafe

(like typetransferfunctions andvariantrecords).
Lastly,to be simple, efficient, and useful, we wanted a

system to beflexiblyextensible. This meant that new mod-
ules could be added that incorporate new procedures

basedoncallingexisting ones.Italso meantthat new data
types could be defined (in new modules), compatible with
existingtypes. We call these extended types, and they con-
stitute the only fundamentalconceptthat was added to
Modula-2.

Typeextension
If, for example,a type Vieweris defined in a module

called Viewers, then a type TextViewercanbe defined as
an extensionofViewer(typically, in another module that
is addedto the system). Whatever operations apply to
Viewers apply equallyto TextViewers, and whateverprop-
erties Viewers have, TextViewers haveas well.

Extensibility guarantees that modules maylater be
added to the system without requiring either changes or
recompilation. Obviously, type safety is crucial and must
cross module boundaries.

Type extensionis a typical object-oriented feature. To
avoid misleading anthropomorphisms, we prefer to say
“TextViewers are compatible with Viewers,” rather than
“TextViewers inherit from Viewers.” Wealso avoid intro-
ducing an entirely new nomenclature forwell-known con-
cepts; for example,westickto the termtype, avoiding the
wordclass; we retain the terms variable and procedure,

avoiding the new termsinstance and method.Cleatly, our
first tenet—concentrating on essentials—also applies to
terminology.

Tale of a data type

An example of a data type will illustrate ourstrategy of

buildingbasic functionality ina core system,with features
added accordingto the system’s extensibility.

Inthesystem's core,the data type Text is definedas char-
acter sequenceswiththeattributesoffont, offset, and
color. Basic editing operations are provided in a module
called TextFrames.

An electronic mail moduleis notincludedin the core,
but can be added whenthere is a demand. Whenitis
added,the electronic mail modulerelieson the core sys-

tem andimportsthe types Text and TextFramedisplaying
texts. This means that normalediting operations can be
applied to received e-mail messages. The messages can be
modified, copied,andinsertedintoothertexts visible on

the screen display by using core operations. The only oper-
ationsthatthe e-mail module uniquely providesarereceiv-
ing, sending, anddeleting a message,plus a commandto
list the mailboxdirectory.

Operation activation
Anotherexamplethatillustratesourstrategy is the acti-

vation of operations. Programs are not executed in
Oberon;instead,individual proceduresare exported from

modules.If a certain module M exports a procedure P,
then P canbe called (activated) by merelypointingat the

 

stringM.P appearingin anytextvisible on the display, that
is, by movingthe cursorto M.P andclicking a mouse but-

ton. Suchstraightforward commandactivation opens the
followingpossibilities:

1. Frequently used commandsarelistedin short pieces
oftext. These are calledtool-texts and resemble cus-
tomized menus, although nospecial menu software is
required. They are typically displayedin small viewers
(windows).

.. By extending the system with a simple graphics edi-

tor that provides captionsbased on Oberontexts, com-
mands can be highlighted and otherwise decorated
with boxes and shadings.This resultsin pop-up and/or
pull-down menus,buttons, andiconsthat are “free”

because the basic commandactivation mechanism is
reused.

. Amessage received by e-mail can contain commands

as well as text. Commandsare executed bytherecip-
ient’s clicking into the message (withoutcopyinginto

a special commandwindow). Weusethis feature,for
example, when announcing new orupdated module
releases, The messagetypically contains receive com-
mandsfollowedbylists ofmodule namesto be down-

loadedfrom the network. Theentire process requires
only a few mouse clicks.

N
9

Keepingit simple
Thestrategy of keeping the core system simple but

extensible rewards the modest user. The Oberon core
occupies fewerthan 200 Kbytes, including editor and com-
piler. A computer system based on Oberon needs to be
expanded only if large, demanding applications are
requested, such as CAD with large memory requirements.
If severalsuch applications are used,the system does not
require them to besimultaneously loaded.This economy
is achieved by the following system properties:

1. Modules canbe loaded on demand. Demandis signaled
either when a commandis activated—whichis
defined in a module not already loaded—or when a

module being loaded imports another module not
already present. Module loadingcan also result from
data access. For example, when a documentthat con-
tains graphical elementsis accessed by an editor
whose graphic packageis notopen, thenthis access
inherentlytriggersits loading.
Every module is in memory at mostonce. This rule pro-
hibits the creationoflinkedloadfiles (core images).
Typically, linked loadfiles are introducedin operating
systems because the processoflinking is complicated

et

and time-consuming (sometimes more so than com-
pilation). With Oberon,linking cannot be separated
from loading.This is entirely acceptable because the

intertwinedactivities are veryfast; they happen auto-
matically thefirst time a moduleis referenced.

Theprice of simplicity
Theexperienced engineer, realizing thatfree lunches

never are,will now ask, Whereis thepricefor this economy
hidden?A simplified answeris:in a clear conceptualbasis

anda well-conceived, appropriate system structure.
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If the core—orany other module—isto be successfully
extensible,its designer must understandhowit will be

used. Indeed, the most demanding aspect ofsystemdesign
is its decomposition into modules. Each module is a part
witha precisely defined interface thatspecifies imports
and exports.

Each module also encapsulates implementation tech-
niques. All of its procedures mustbe consistent with
respectto handling its exported data types.Precisely defin-

ing the right decomposition is difficult and can rarely be
achieved withoutiterations. Iterative (tuning) improve-
mentsareofcourseonly possibleupto the timeofsystem
release.

It is difficult to generalize design rules.If an abstract
data typeis defined, carefullydeliberated basic operations

must accompanyit, but composite operations should be

avoided.It’s also safeto say that the long-accepted rule of
specification before implementation mustberelaxed.

Specifications can turnout to be as unsuitable as imple-
mentations can turn outto be wrong.

IN CONCLUDING, HERE ARE NINE LESSONS LEARNED from the
Oberonproject that might be worth consideringby any-

| one embarking on a new software design:

1. The exclusive use of a stronglytyped language was the
mostinfluentialfactor in designing this complex sys-
tem in such short time.(The manpower was a small
fraction ofwhat would typicallybe expendedforcom-

parably sized projects based on other languages.)
Static typing (a) lets the compiler pinpoint inconsis-
tencies before program execution;(b) lets the design-
er change definitions and structures with less danger
of negative consequences; and (c) speeds up the
improvementprocess, which couldinclude changes
that mightnototherwise be consideredfeasible.

. The mostdifficult design taskis to find the most appro-
priate decomposition ofthe wholeinto a modulehier-
archy, minimizingfunction and code duplications.
Oberonis highly supportivein this respect by carry-
ing typechecks over module boundaries.

3. Oberon’stype extension construct wasessential for

designingan extensible system wherein new modules
added functionality and new object classes integrat-
ed compatibly with the existing classes or data types.
Extensibility is prerequisite to keeping a system

streamlined from theoutset. It also permits the sys-
tem to be customized to accommodatespecific appli-

cations at any time, notably without access to the
source code.

4. In an extensible system,the keyissueis to identify
thoseprimitives thatoffer the most flexibility for
extensions, while avoiding a proliferationof primi-
tives.

. Thebelief that complex systemsrequire armies of
designers and programmers is wrong. A system that
is not understoodin its entirety, or at least to signif-

icant degreeof detail by a single individual, should
probably not be built.

6. Communication problems growasthesize of the
design team grows. Whether they are obviousornot,
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when communication problems predominate, the
team andthe projectare both in deep trouble.
Reducing complexity and size must be the goalin
every step—insystem specification, design, and in
detailed programming. A programmer's competence
should bejudged by the ability to find simple solutions,
certainly not by productivity measuredin “numberof
lines ejected per day.”Prolificprogrammers contribute
to certain disaster.

8, To gain experience, there isno substitute forone’sown
programming effort. Organizing a team into man-
agers, designers, programmers, analysts, and usersis
detrimental. All shouldparticipate (with differing
degrees ofemphasis) inall aspects ofdevelopment. In
particular, everyone—including managers—should
also be product usersfor a time. This last measureis

the best guaranteeto correct mistakes and perhaps

alsoto eliminate redundancies.
9. Programsshouldbe written and polished until they

acquire publication quality. It is infinitely more
demandingto design a publishable program than one
that “runs.” Programsshould be written for human.

readers aswell as for computers.If this notion con-
tradicts certain vestedinterests in the commercial

world,it shouldatleastfind noresistance in acade-
mia.

N

With Project Oberon we have demonstratedthatflexi-
ble and powerful systems can bebuilt with substantially
fewer resourcesin less timethan usual. The plagueofsoft-
ware explosionis not a “lawofnature.”It is avoidable, and

itis the software engineer’staskto curtail it. 1
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